Spinocerebellar ataxia 2

Common Name(s)

Spinocerebellar ataxia 2

Spinocerebellar ataxia 2 is a progressive disorder that causes uncoordinated movement (ataxia), slow eye movement, and sometimes dementia (memory loss). It is caused by a mutation in the ATXN2 gene. It usually affects people in adulthood, but can develop in childhood or adolescence. Each child of a person with spinocerebellar ataxia 2 has a 50% (1 in 2) chance of inheriting the condition.
 

Advocacy and Support Organizations

 

Condition Specific Organizations

Following organizations serve the condition "Spinocerebellar ataxia 2" for support, advocacy or research.

Logo
National Ataxia Foundation

The National Ataxia Foundation is dedicated to improving the lives of persons affected by ataxia through support, education, and research.

Last Updated: 12 Dec 2012

View Details

 

General Support Organizations

Not finding the support you need? Show General Support Organizations

 
 
Top

How do you compare to others with this condition?

Privately answer questions about your health. Let resources, you select, come to you.

Anonymously share and see how your answers compare with others with this condition while privately providing key pieces of information to medical researchers, disease advocacy groups, and others ONLY YOU select to help speed up cures and better alternatives.

 
 

Advocacy and Support Organizations

 

Condition Specific Organizations

Following organizations serve the condition "Spinocerebellar ataxia 2" for support, advocacy or research.

Logo
National Ataxia Foundation

The National Ataxia Foundation is dedicated to improving the lives of persons affected by ataxia through support, education, and research.

http://www.ataxia.org

Last Updated: 12 Dec 2012

View Details

 

General Support Organizations

Not finding the support you need? Show General Support Organizations

 
 
 
 
Top

Scientific Literature

Articles from the PubMed Database

Research articles describe the outcome of a single study. They are the published results of original research.
The terms "Spinocerebellar ataxia 2" returned 55 free, full-text research articles on human participants. First 3 results:

Progression of microstructural damage in spinocerebellar ataxia type 2: a longitudinal DTI study.
 

Author(s): M Mascalchi, N Toschi, M Giannelli, A Ginestroni, R Della Nave, E Nicolai, A Bianchi, C Tessa, E Salvatore, M Aiello, A Soricelli, S Diciotti

Journal: AJNR Am J Neuroradiol. 2015 Jun;36(6):1096-101.

 

The ability of DTI to track the progression of microstructural damage in patients with inherited ataxias has not been explored so far. We performed a longitudinal DTI study in patients with spinocerebellar ataxia type 2.

Last Updated: 13 Jun 2015

Go To URL
In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.
 

Author(s): Isaac M Adanyeguh, Pierre-Gilles Henry, Tra M Nguyen, Daisy Rinaldi, Celine Jauffret, Romain Valabregue, Uzay E Emir, Dinesh K Deelchand, Alexis Brice, Lynn E Eberly, Gülin Öz, Alexandra Durr, Fanny Mochel

Journal: Mov. Disord.. 2015 Apr;30(5):662-70.

 

Spinocerebellar ataxias (SCAs) belong to polyglutamine repeat disorders and are characterized by a predominant atrophy of the cerebellum and the pons. Proton magnetic resonance spectroscopy ((1) H MRS) using an optimized semiadiabatic localization by adiabatic selective refocusing ...

Last Updated: 13 Apr 2015

Go To URL
Bolivian kindred with combined spinocerebellar ataxia types 2 and 10.
 

Author(s): J F Baizabal-Carvallo, G Xia, P Botros, J Laguna, T Ashizawa, J Jankovic

Journal: Acta Neurol. Scand.. 2015 Aug;132(2):139-42.

 

Spinocerebellar ataxias (SCA) are a group of rare hereditary neurodegenerative disorders. Rare cases of two SCA mutations in the same individual have been reported in the literature, however, family descriptions are lacking.

Last Updated: 7 Jul 2015

Go To URL

Reviews from the PubMed Database

Review articles summarize what is currently known about a disease. They discuss research previously published by others.
The terms "Spinocerebellar ataxia 2" returned 2 free, full-text review articles on human participants. First 3 results:

Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias.
 

Author(s): Adebimpe Kasumu, Ilya Bezprozvanny

Journal: Cerebellum. 2012 Sep;11(3):630-9.

 

Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 30 autosomal-dominant genetic and neurodegenerative disorders. SCAs are generally characterized by progressive ataxia and cerebellar atrophy. Although all SCA patients present with the phenotypic overlap ...

Last Updated: 6 Aug 2012

Go To URL
Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance.
 

Author(s): U Rüb, D Del Turco, K Del Tredici, R A I de Vos, E R Brunt, G Reifenberger, C Seifried, C Schultz, G Auburger, H Braak

Journal: Brain. 2003 Oct;126(Pt 10):2257-72.

 

In spite of the considerable progress in clinical and molecular research, knowledge regarding brain damage in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) still is limited and the extent to which the thalamus is involved in both diseases is uncertain. Accordingly, we performed ...

Last Updated: 8 Sep 2003

Go To URL
 
 
Top

Symptoms, Diagnosis, and Treatment

There are currently no related results available in Genetics Home Reference.

 
 
Top

Clinical Trial Information This information is provided by ClinicalTrials.gov

Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford
 

Status: Recruiting

Condition Summary: Rare Disorders; Undiagnosed Disorders; Disorders of Unknown Prevalence; Cornelia De Lange Syndrome; Prenatal Benign Hypophosphatasia; Perinatal Lethal Hypophosphatasia; Odontohypophosphatasia; Adult Hypophosphatasia; Childhood-onset Hypophosphatasia; Infantile Hypophosphatasia; Hypophosphatasia; Kabuki Syndrome; Bohring-Opitz Syndrome; Narcolepsy Without Cataplexy; Narcolepsy-cataplexy; Hypersomnolence Disorder; Idiopathic Hypersomnia Without Long Sleep Time; Idiopathic Hypersomnia With Long Sleep Time; Idiopathic Hypersomnia; Kleine-Levin Syndrome; Kawasaki Disease; Leiomyosarcoma; Leiomyosarcoma of the Corpus Uteri; Leiomyosarcoma of the Cervix Uteri; Leiomyosarcoma of Small Intestine; Acquired Myasthenia Gravis; Addison Disease; Hyperacusis (Hyperacousis); Juvenile Myasthenia Gravis; Transient Neonatal Myasthenia Gravis; Williams Syndrome; Lyme Disease; Myasthenia Gravis; Marinesco Sjogren Syndrome(Marinesco-Sjogren Syndrome); Isolated Klippel-Feil Syndrome; Frasier Syndrome; Denys-Drash Syndrome; Beckwith-Wiedemann Syndrome; Emanuel Syndrome; Isolated Aniridia; Beckwith-Wiedemann Syndrome Due to Paternal Uniparental Disomy of Chromosome 11; Beckwith-Wiedemann Syndrome Due to Imprinting Defect of 11p15; Beckwith-Wiedemann Syndrome Due to 11p15 Translocation/Inversion; Beckwith-Wiedemann Syndrome Due to 11p15 Microduplication; Beckwith-Wiedemann Syndrome Due to 11p15 Microdeletion; Axenfeld-Rieger Syndrome; Aniridia-intellectual Disability Syndrome; Aniridia - Renal Agenesis - Psychomotor Retardation; Aniridia - Ptosis - Intellectual Disability - Familial Obesity; Aniridia - Cerebellar Ataxia - Intellectual Disability; Aniridia - Absent Patella; Aniridia; Peters Anomaly - Cataract; Peters Anomaly; Potocki-Shaffer Syndrome; Silver-Russell Syndrome Due to Maternal Uniparental Disomy of Chromosome 11; Silver-Russell Syndrome Due to Imprinting Defect of 11p15; Silver-Russell Syndrome Due to 11p15 Microduplication; Syndromic Aniridia; WAGR Syndrome; Wolf-Hirschhorn Syndrome; 4p16.3 Microduplication Syndrome; 4p Deletion Syndrome, Non-Wolf-Hirschhorn Syndrome; Autosomal Recessive Stickler Syndrome; Stickler Syndrome Type 2; Stickler Syndrome Type 1; Stickler Syndrome; Mucolipidosis Type 4; X-linked Spinocerebellar Ataxia Type 4; X-linked Spinocerebellar Ataxia Type 3; X-linked Intellectual Disability - Ataxia - Apraxia; X-linked Progressive Cerebellar Ataxia; X-linked Non Progressive Cerebellar Ataxia; X-linked Cerebellar Ataxia; Vitamin B12 Deficiency Ataxia; Toxic Exposure Ataxia; Unclassified Autosomal Dominant Spinocerebellar Ataxia; Thyroid Antibody Ataxia; Sporadic Adult-onset Ataxia of Unknown Etiology; Spinocerebellar Ataxia With Oculomotor Anomaly; Spinocerebellar Ataxia With Epilepsy; Spinocerebellar Ataxia With Axonal Neuropathy Type 2; Spinocerebellar Ataxia Type 8; Spinocerebellar Ataxia Type 7; Spinocerebellar Ataxia Type 6; Spinocerebellar Ataxia Type 5; Spinocerebellar Ataxia Type 4; Spinocerebellar Ataxia Type 37; Spinocerebellar Ataxia Type 36; Spinocerebellar Ataxia Type 35; Spinocerebellar Ataxia Type 34; Spinocerebellar Ataxia Type 32; Spinocerebellar Ataxia Type 31; Spinocerebellar Ataxia Type 30; Spinocerebellar Ataxia Type 3; Spinocerebellar Ataxia Type 29; Spinocerebellar Ataxia Type 28; Spinocerebellar Ataxia Type 27; Spinocerebellar Ataxia Type 26; Spinocerebellar Ataxia Type 25; Spinocerebellar Ataxia Type 23; Spinocerebellar Ataxia Type 22; Spinocerebellar Ataxia Type 21; Spinocerebellar Ataxia Type 20; Spinocerebellar Ataxia Type 2; Spinocerebellar Ataxia Type 19/22; Spinocerebellar Ataxia Type 18; Spinocerebellar Ataxia Type 17; Spinocerebellar Ataxia Type 16; Spinocerebellar Ataxia Type 15/16; Spinocerebellar Ataxia Type 14; Spinocerebellar Ataxia Type 13; Spinocerebellar Ataxia Type 12; Spinocerebellar Ataxia Type 11; Spinocerebellar Ataxia Type 10; Spinocerebellar Ataxia Type 1 With Axonal Neuropathy; Spinocerebellar Ataxia Type 1; Spinocerebellar Ataxia - Unknown; Spinocerebellar Ataxia - Dysmorphism; Non Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Spectrin-associated Autosomal Recessive Cerebellar Ataxia; Spasticity-ataxia-gait Anomalies Syndrome; Spastic Ataxia With Congenital Miosis; Spastic Ataxia - Corneal Dystrophy; Spastic Ataxia; Rare Hereditary Ataxia; Rare Ataxia; Recessive Mitochondrial Ataxia Syndrome; Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Posterior Column Ataxia - Retinitis Pigmentosa; Post-Stroke Ataxia; Post-Head Injury Ataxia; Post Vaccination Ataxia; Polyneuropathy - Hearing Loss - Ataxia - Retinitis Pigmentosa - Cataract; Muscular Atrophy - Ataxia - Retinitis Pigmentosa - Diabetes Mellitus; Non-progressive Cerebellar Ataxia With Intellectual Disability; Non-hereditary Degenerative Ataxia; Paroxysmal Dystonic Choreathetosis With Episodic Ataxia and Spasticity; Olivopontocerebellar Atrophy - Deafness; NARP Syndrome; Myoclonus - Cerebellar Ataxia - Deafness; Multiple System Atrophy, Parkinsonian Type; Multiple System Atrophy, Cerebellar Type; Multiple System Atrophy; Maternally-inherited Leigh Syndrome; Machado-Joseph Disease Type 3; Machado-Joseph Disease Type 2; Machado-Joseph Disease Type 1; Lethal Ataxia With Deafness and Optic Atrophy; Leigh Syndrome; Leukoencephalopathy With Mild Cerebellar Ataxia and White Matter Edema; Leukoencephalopathy - Ataxia - Hypodontia - Hypomyelination; Leigh Syndrome With Nephrotic Syndrome; Leigh Syndrome With Leukodystrophy; Leigh Syndrome With Cardiomyopathy; Late-onset Ataxia With Dementia; Intellectual Disability-hyperkinetic Movement-truncal Ataxia Syndrome; Infection or Post Infection Ataxia; Infantile-onset Autosomal Recessive Nonprogressive Cerebellar Ataxia; Infantile Onset Spinocerebellar Ataxia; GAD Ataxia; Hereditary Episodic Ataxia; Gliadin/Gluten Ataxia; Friedreich Ataxia; Fragile X-associated Tremor/Ataxia Syndrome; Familial Paroxysmal Ataxia; Exposure to Medications Ataxia; Episodic Ataxia With Slurred Speech; Episodic Ataxia Unknown Type; Episodic Ataxia Type 7; Episodic Ataxia Type 6; Episodic Ataxia Type 5; Episodic Ataxia Type 4; Episodic Ataxia Type 3; Episodic Ataxia Type 1; Epilepsy and/or Ataxia With Myoclonus as Major Feature; Early-onset Spastic Ataxia-neuropathy Syndrome; Early-onset Progressive Neurodegeneration - Blindness - Ataxia - Spasticity; Early-onset Cerebellar Ataxia With Retained Tendon Reflexes; Early-onset Ataxia With Dementia; Childhood-onset Autosomal Recessive Slowly Progressive Spinocerebellar Ataxia; Dilated Cardiomyopathy With Ataxia; Cataract - Ataxia - Deafness; Cerebellar Ataxia, Cayman Type; Cerebellar Ataxia With Peripheral Neuropathy; Cerebellar Ataxia - Hypogonadism; Cerebellar Ataxia - Ectodermal Dysplasia; Cerebellar Ataxia - Areflexia - Pes Cavus - Optic Atrophy - Sensorineural Hearing Loss; Brain Tumor Ataxia; Brachydactyly - Nystagmus - Cerebellar Ataxia; Benign Paroxysmal Tonic Upgaze of Childhood With Ataxia; Autosomal Recessive Syndromic Cerebellar Ataxia; Autosomal Recessive Spastic Ataxia With Leukoencephalopathy; Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay; Autosomal Recessive Spastic Ataxia - Optic Atrophy - Dysarthria; Autosomal Recessive Spastic Ataxia; Autosomal Recessive Metabolic Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to Repeat Expansions That do Not Encode Polyglutamine; Autosomal Recessive Ataxia, Beauce Type; Autosomal Recessive Ataxia Due to Ubiquinone Deficiency; Autosomal Recessive Ataxia Due to PEX10 Deficiency; Autosomal Recessive Degenerative and Progressive Cerebellar Ataxia; Autosomal Recessive Congenital Cerebellar Ataxia Due to MGLUR1 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia Due to GRID2 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia; Autosomal Recessive Cerebellar Ataxia-pyramidal Signs-nystagmus-oculomotor Apraxia Syndrome; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to WWOX Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to TUD Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to KIAA0226 Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome; Autosomal Recessive Cerebellar Ataxia With Late-onset Spasticity; Autosomal Recessive Cerebellar Ataxia Due to STUB1 Deficiency; Autosomal Recessive Cerebellar Ataxia Due to a DNA Repair Defect; Autosomal Recessive Cerebellar Ataxia - Saccadic Intrusion; Autosomal Recessive Cerebellar Ataxia - Psychomotor Retardation; Autosomal Recessive Cerebellar Ataxia - Blindness - Deafness; Autosomal Recessive Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to a Polyglutamine Anomaly; Autosomal Dominant Spinocerebellar Ataxia Due to a Point Mutation; Autosomal Dominant Spinocerebellar Ataxia Due to a Channelopathy; Autosomal Dominant Spastic Ataxia Type 1; Autosomal Dominant Spastic Ataxia; Autosomal Dominant Optic Atrophy; Ataxia-telangiectasia Variant; Ataxia-telangiectasia; Autosomal Dominant Cerebellar Ataxia, Deafness and Narcolepsy; Autosomal Dominant Cerebellar Ataxia Type 4; Autosomal Dominant Cerebellar Ataxia Type 3; Autosomal Dominant Cerebellar Ataxia Type 2; Autosomal Dominant Cerebellar Ataxia Type 1; Autosomal Dominant Cerebellar Ataxia; Ataxia-telangiectasia-like Disorder; Ataxia-intellectual Disability-oculomotor Apraxia-cerebellar Cysts Syndrome; Ataxia-deafness-intellectual Disability Syndrome; Ataxia With Vitamin E Deficiency; Ataxia With Dementia; Ataxia Neuropathy Spectrum; Ataxia - Tapetoretinal Degeneration; Ataxia - Photosensitivity - Short Stature; Ataxia - Pancytopenia; Ataxia - Oculomotor Apraxia Type 1; Ataxia - Hypogonadism - Choroidal Dystrophy; Ataxia - Other; Ataxia - Genetic Diagnosis - Unknown; Acquired Ataxia; Adult-onset Autosomal Recessive Cerebellar Ataxia; Alcohol Related Ataxia

 

Last Updated: 1 Sep 2016

Go to URL
Natural History Study of and Genetic Modifiers in Spinocerebellar Ataxias
 

Status: Recruiting

Condition Summary: Spinocerebellar Ataxia Type 1; Spinocerebellar Ataxia Type 2; Spinocerebellar Ataxia Type 3; Spinocerebellar Ataxia Type 6

 

Last Updated: 17 Jun 2016

Go to URL
Pancreatic Cancer Screening of High-Risk Individuals in Arkansas
 

Status: Recruiting

Condition Summary: Pancreatic Neoplasms; Peutz-Jegher's Syndrome; BRCA1 Gene Mutation; BRCA2 Gene Mutation; Ataxia Telangiectasia; Familial Atypical Mole-Malignant Melanoma Syndrome; Colorectal Neoplasms, Hereditary Nonpolyposis; Hereditary Pancreatitis

 

Last Updated: 20 Jul 2016

Go to URL