Retinitis pigmentosa 2

Common Name(s)

Retinitis pigmentosa 2, Retinitis pigmentosa 2, x-linked

Retinitis pigmentosa 2 is one of several different forms of retinitis pigmentosa (RP), a genetic eye condition that leads to vision loss. RP is caused by the loss of light receptor cells (photoreceptors) that are located in the back of the eye (retina). The photoreceptors, which send signals from the eye to the brain, are made up of rods and cones. The rods help with vision in lower light as well as side (peripheral) vision. The cones help with vision in bright light. In RP, the rods start to go away first, which causes a person to have poor night vision, which usually starts in childhood. As time goes on, a person starts to have poor peripheral vision, followed by vision only in the center (tunnel vision) and then total blindness. The progression of these symptoms usually takes several years. Retinitis pigmentosa 2 usually affects males.

Retinitis pigmentosa 2 is caused by a change (mutation) in the RP2 gene, which is located on the X chromosome, and is inherited in an x-linked recessive manner. Males have one X chromosome (one copy of the RP2 gene) and females have two X chromosomes (two copies of the RP2 gene). If a male has a mutation in their only RP2 gene copy, they do not have a working copy of the gene and will have retinitis pigmentosa. If females have a mutation in one of their two copies of the RP2 gene, they have another working copy as backup and typically will not have retinitis pigmentosa.

RP can be diagnosed with the use of vision tests and eye exams that show poor vision, rod dysfunction, and loss of photoreceptor function. There is currently not a cure for RP, but there are some medications available that may help slow the progress of the disease. If your child has been diagnosed with RP, talk to their doctor about current treatment options. Support groups may provide additional information and connect you with others affected by RP.

Source: Advocacy organizations associated with the condition.

 

Advocacy and Support Organizations

 

Condition Specific Organizations

Following organizations serve the condition "Retinitis pigmentosa 2" for support, advocacy or research.

There are currently no organizations listed in Disease InfoSearch that support this condition. Create a listing.

 

 

General Support Organizations

Not finding the support you need? Show General Support Organizations

 
 
Top

How do you compare to others with this condition?

Privately answer questions about your health. Let resources, you select, come to you.

Anonymously share and see how your answers compare with others with this condition while privately providing key pieces of information to medical researchers, disease advocacy groups, and others ONLY YOU select to help speed up cures and better alternatives.

 
 

Advocacy and Support Organizations

 

Condition Specific Organizations

Following organizations serve the condition "Retinitis pigmentosa 2" for support, advocacy or research.

There are currently no organizations listed in Disease InfoSearch that support this condition. Create a listing.

 

 

General Support Organizations

Not finding the support you need? Show General Support Organizations

 
 
 
 
Top

Scientific Literature

Articles from the PubMed Database

Research articles describe the outcome of a single study. They are the published results of original research.
The terms "Retinitis pigmentosa 2" returned 19 free, full-text research articles on human participants. First 3 results:

Loss of retinitis pigmentosa 2 (RP2) protein affects cone photoreceptor sensory cilium elongation in mice.
 

Author(s): Linjing Li, Kollu Nageswara Rao, Yun Zheng-Le, Toby W Hurd, ConcepciĆ³n Lillo, Hemant Khanna

Journal: Cytoskeleton (Hoboken). 2015 Sep;72(9):447-54.

 

Degeneration of photoreceptors (rods and cones) results in blindness. As we rely almost entirely on our daytime vision mediated by the cones, it is the loss of these photoreceptors that results in legal blindness and poor quality of life. Cone dysfunction is usually observed due to ...

Last Updated: 15 Jan 2016

Go To URL
Long-term rescue of cone photoreceptor degeneration in retinitis pigmentosa 2 (RP2)-knockout mice by gene replacement therapy.
 

Author(s): Suddhasil Mookherjee, Suja Hiriyanna, Kayleigh Kaneshiro, Linjing Li, Yichao Li, Wei Li, Haohua Qian, Tiansen Li, Hemant Khanna, Peter Colosi, Anand Swaroop, Zhijian Wu

Journal: Hum. Mol. Genet.. 2015 Nov;24(22):6446-58.

 

Retinal neurodegenerative diseases are especially attractive targets for gene replacement therapy, which appears to be clinically effective for several monogenic diseases. X-linked forms of retinitis pigmentosa (XLRP) are relatively severe blinding disorders, resulting from progressive ...

Last Updated: 23 Oct 2015

Go To URL
Multimodal Imaging of Central Retinal Disease Progression in a 2-Year Mean Follow-up of Retinitis Pigmentosa.
 

Author(s): Tharikarn Sujirakul, Michael K Lin, Jimmy Duong, Ying Wei, Sara Lopez-Pintado, Stephen H Tsang

Journal: Am. J. Ophthalmol.. 2015 Oct;160(4):786-98.e4.

 

To determine the rate of progression and optimal follow-up time in patients with advanced-stage retinitis pigmentosa (RP) comparing the use of fundus autofluorescence imaging and spectral-domain optical coherence tomography.

Last Updated: 14 Sep 2015

Go To URL

Reviews from the PubMed Database

Review articles summarize what is currently known about a disease. They discuss research previously published by others.
The terms "Retinitis pigmentosa 2" returned 0 free, full-text review articles on human participants.

 
 
Top

Clinical Trial Information This information is provided by ClinicalTrials.gov

Recombinant Albumin Fusion Protein sEphB4-HSA in Treating Patients With Metastatic or Recurrent Solid Tumors
 

Status: Recruiting

Condition Summary: Unspecified Adult Solid Tumor, Protocol Specific

 

Last Updated: 6 Jul 2015

Go to URL
VX-970 and Whole Brain Radiation Therapy in Treating Patients With Brain Metastases From Non-small Cell Lung Cancer
 

Status: Recruiting

Condition Summary: Lung Carcinoma Metastatic in the Brain; Stage IV Non-Small Cell Lung Cancer

 

Last Updated: 23 Mar 2017

Go to URL
Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford
 

Status: Recruiting

Condition Summary: Rare Disorders; Undiagnosed Disorders; Disorders of Unknown Prevalence; Cornelia De Lange Syndrome; Prenatal Benign Hypophosphatasia; Perinatal Lethal Hypophosphatasia; Odontohypophosphatasia; Adult Hypophosphatasia; Childhood-onset Hypophosphatasia; Infantile Hypophosphatasia; Hypophosphatasia; Kabuki Syndrome; Bohring-Opitz Syndrome; Narcolepsy Without Cataplexy; Narcolepsy-cataplexy; Hypersomnolence Disorder; Idiopathic Hypersomnia Without Long Sleep Time; Idiopathic Hypersomnia With Long Sleep Time; Idiopathic Hypersomnia; Kleine-Levin Syndrome; Kawasaki Disease; Leiomyosarcoma; Leiomyosarcoma of the Corpus Uteri; Leiomyosarcoma of the Cervix Uteri; Leiomyosarcoma of Small Intestine; Acquired Myasthenia Gravis; Addison Disease; Hyperacusis (Hyperacousis); Juvenile Myasthenia Gravis; Transient Neonatal Myasthenia Gravis; Williams Syndrome; Lyme Disease; Myasthenia Gravis; Marinesco Sjogren Syndrome(Marinesco-Sjogren Syndrome); Isolated Klippel-Feil Syndrome; Frasier Syndrome; Denys-Drash Syndrome; Beckwith-Wiedemann Syndrome; Emanuel Syndrome; Isolated Aniridia; Beckwith-Wiedemann Syndrome Due to Paternal Uniparental Disomy of Chromosome 11; Beckwith-Wiedemann Syndrome Due to Imprinting Defect of 11p15; Beckwith-Wiedemann Syndrome Due to 11p15 Translocation/Inversion; Beckwith-Wiedemann Syndrome Due to 11p15 Microduplication; Beckwith-Wiedemann Syndrome Due to 11p15 Microdeletion; Axenfeld-Rieger Syndrome; Aniridia-intellectual Disability Syndrome; Aniridia - Renal Agenesis - Psychomotor Retardation; Aniridia - Ptosis - Intellectual Disability - Familial Obesity; Aniridia - Cerebellar Ataxia - Intellectual Disability; Aniridia - Absent Patella; Aniridia; Peters Anomaly - Cataract; Peters Anomaly; Potocki-Shaffer Syndrome; Silver-Russell Syndrome Due to Maternal Uniparental Disomy of Chromosome 11; Silver-Russell Syndrome Due to Imprinting Defect of 11p15; Silver-Russell Syndrome Due to 11p15 Microduplication; Syndromic Aniridia; WAGR Syndrome; Wolf-Hirschhorn Syndrome; 4p16.3 Microduplication Syndrome; 4p Deletion Syndrome, Non-Wolf-Hirschhorn Syndrome; Autosomal Recessive Stickler Syndrome; Stickler Syndrome Type 2; Stickler Syndrome Type 1; Stickler Syndrome; Mucolipidosis Type 4; X-linked Spinocerebellar Ataxia Type 4; X-linked Spinocerebellar Ataxia Type 3; X-linked Intellectual Disability - Ataxia - Apraxia; X-linked Progressive Cerebellar Ataxia; X-linked Non Progressive Cerebellar Ataxia; X-linked Cerebellar Ataxia; Vitamin B12 Deficiency Ataxia; Toxic Exposure Ataxia; Unclassified Autosomal Dominant Spinocerebellar Ataxia; Thyroid Antibody Ataxia; Sporadic Adult-onset Ataxia of Unknown Etiology; Spinocerebellar Ataxia With Oculomotor Anomaly; Spinocerebellar Ataxia With Epilepsy; Spinocerebellar Ataxia With Axonal Neuropathy Type 2; Spinocerebellar Ataxia Type 8; Spinocerebellar Ataxia Type 7; Spinocerebellar Ataxia Type 6; Spinocerebellar Ataxia Type 5; Spinocerebellar Ataxia Type 4; Spinocerebellar Ataxia Type 37; Spinocerebellar Ataxia Type 36; Spinocerebellar Ataxia Type 35; Spinocerebellar Ataxia Type 34; Spinocerebellar Ataxia Type 32; Spinocerebellar Ataxia Type 31; Spinocerebellar Ataxia Type 30; Spinocerebellar Ataxia Type 3; Spinocerebellar Ataxia Type 29; Spinocerebellar Ataxia Type 28; Spinocerebellar Ataxia Type 27; Spinocerebellar Ataxia Type 26; Spinocerebellar Ataxia Type 25; Spinocerebellar Ataxia Type 23; Spinocerebellar Ataxia Type 22; Spinocerebellar Ataxia Type 21; Spinocerebellar Ataxia Type 20; Spinocerebellar Ataxia Type 2; Spinocerebellar Ataxia Type 19/22; Spinocerebellar Ataxia Type 18; Spinocerebellar Ataxia Type 17; Spinocerebellar Ataxia Type 16; Spinocerebellar Ataxia Type 15/16; Spinocerebellar Ataxia Type 14; Spinocerebellar Ataxia Type 13; Spinocerebellar Ataxia Type 12; Spinocerebellar Ataxia Type 11; Spinocerebellar Ataxia Type 10; Spinocerebellar Ataxia Type 1 With Axonal Neuropathy; Spinocerebellar Ataxia Type 1; Spinocerebellar Ataxia - Unknown; Spinocerebellar Ataxia - Dysmorphism; Non Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Spectrin-associated Autosomal Recessive Cerebellar Ataxia; Spasticity-ataxia-gait Anomalies Syndrome; Spastic Ataxia With Congenital Miosis; Spastic Ataxia - Corneal Dystrophy; Spastic Ataxia; Rare Hereditary Ataxia; Rare Ataxia; Recessive Mitochondrial Ataxia Syndrome; Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Posterior Column Ataxia - Retinitis Pigmentosa; Post-Stroke Ataxia; Post-Head Injury Ataxia; Post Vaccination Ataxia; Polyneuropathy - Hearing Loss - Ataxia - Retinitis Pigmentosa - Cataract; Muscular Atrophy - Ataxia - Retinitis Pigmentosa - Diabetes Mellitus; Non-progressive Cerebellar Ataxia With Intellectual Disability; Non-hereditary Degenerative Ataxia; Paroxysmal Dystonic Choreathetosis With Episodic Ataxia and Spasticity; Olivopontocerebellar Atrophy - Deafness; NARP Syndrome; Myoclonus - Cerebellar Ataxia - Deafness; Multiple System Atrophy, Parkinsonian Type; Multiple System Atrophy, Cerebellar Type; Multiple System Atrophy; Maternally-inherited Leigh Syndrome; Machado-Joseph Disease Type 3; Machado-Joseph Disease Type 2; Machado-Joseph Disease Type 1; Lethal Ataxia With Deafness and Optic Atrophy; Leigh Syndrome; Leukoencephalopathy With Mild Cerebellar Ataxia and White Matter Edema; Leukoencephalopathy - Ataxia - Hypodontia - Hypomyelination; Leigh Syndrome With Nephrotic Syndrome; Leigh Syndrome With Leukodystrophy; Leigh Syndrome With Cardiomyopathy; Late-onset Ataxia With Dementia; Intellectual Disability-hyperkinetic Movement-truncal Ataxia Syndrome; Infection or Post Infection Ataxia; Infantile-onset Autosomal Recessive Nonprogressive Cerebellar Ataxia; Infantile Onset Spinocerebellar Ataxia; GAD Ataxia; Hereditary Episodic Ataxia; Gliadin/Gluten Ataxia; Friedreich Ataxia; Fragile X-associated Tremor/Ataxia Syndrome; Familial Paroxysmal Ataxia; Exposure to Medications Ataxia; Episodic Ataxia With Slurred Speech; Episodic Ataxia Unknown Type; Episodic Ataxia Type 7; Episodic Ataxia Type 6; Episodic Ataxia Type 5; Episodic Ataxia Type 4; Episodic Ataxia Type 3; Episodic Ataxia Type 1; Epilepsy and/or Ataxia With Myoclonus as Major Feature; Early-onset Spastic Ataxia-neuropathy Syndrome; Early-onset Progressive Neurodegeneration - Blindness - Ataxia - Spasticity; Early-onset Cerebellar Ataxia With Retained Tendon Reflexes; Early-onset Ataxia With Dementia; Childhood-onset Autosomal Recessive Slowly Progressive Spinocerebellar Ataxia; Dilated Cardiomyopathy With Ataxia; Cataract - Ataxia - Deafness; Cerebellar Ataxia, Cayman Type; Cerebellar Ataxia With Peripheral Neuropathy; Cerebellar Ataxia - Hypogonadism; Cerebellar Ataxia - Ectodermal Dysplasia; Cerebellar Ataxia - Areflexia - Pes Cavus - Optic Atrophy - Sensorineural Hearing Loss; Brain Tumor Ataxia; Brachydactyly - Nystagmus - Cerebellar Ataxia; Benign Paroxysmal Tonic Upgaze of Childhood With Ataxia; Autosomal Recessive Syndromic Cerebellar Ataxia; Autosomal Recessive Spastic Ataxia With Leukoencephalopathy; Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay; Autosomal Recessive Spastic Ataxia - Optic Atrophy - Dysarthria; Autosomal Recessive Spastic Ataxia; Autosomal Recessive Metabolic Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to Repeat Expansions That do Not Encode Polyglutamine; Autosomal Recessive Ataxia, Beauce Type; Autosomal Recessive Ataxia Due to Ubiquinone Deficiency; Autosomal Recessive Ataxia Due to PEX10 Deficiency; Autosomal Recessive Degenerative and Progressive Cerebellar Ataxia; Autosomal Recessive Congenital Cerebellar Ataxia Due to MGLUR1 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia Due to GRID2 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia; Autosomal Recessive Cerebellar Ataxia-pyramidal Signs-nystagmus-oculomotor Apraxia Syndrome; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to WWOX Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to TUD Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to KIAA0226 Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome; Autosomal Recessive Cerebellar Ataxia With Late-onset Spasticity; Autosomal Recessive Cerebellar Ataxia Due to STUB1 Deficiency; Autosomal Recessive Cerebellar Ataxia Due to a DNA Repair Defect; Autosomal Recessive Cerebellar Ataxia - Saccadic Intrusion; Autosomal Recessive Cerebellar Ataxia - Psychomotor Retardation; Autosomal Recessive Cerebellar Ataxia - Blindness - Deafness; Autosomal Recessive Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to a Polyglutamine Anomaly; Autosomal Dominant Spinocerebellar Ataxia Due to a Point Mutation; Autosomal Dominant Spinocerebellar Ataxia Due to a Channelopathy; Autosomal Dominant Spastic Ataxia Type 1; Autosomal Dominant Spastic Ataxia; Autosomal Dominant Optic Atrophy; Ataxia-telangiectasia Variant; Ataxia-telangiectasia; Autosomal Dominant Cerebellar Ataxia, Deafness and Narcolepsy; Autosomal Dominant Cerebellar Ataxia Type 4; Autosomal Dominant Cerebellar Ataxia Type 3; Autosomal Dominant Cerebellar Ataxia Type 2; Autosomal Dominant Cerebellar Ataxia Type 1; Autosomal Dominant Cerebellar Ataxia; Ataxia-telangiectasia-like Disorder; Ataxia-intellectual Disability-oculomotor Apraxia-cerebellar Cysts Syndrome; Ataxia-deafness-intellectual Disability Syndrome; Ataxia With Vitamin E Deficiency; Ataxia With Dementia; Ataxia Neuropathy Spectrum; Ataxia - Tapetoretinal Degeneration; Ataxia - Photosensitivity - Short Stature; Ataxia - Pancytopenia; Ataxia - Oculomotor Apraxia Type 1; Ataxia - Hypogonadism - Choroidal Dystrophy; Ataxia - Other; Ataxia - Genetic Diagnosis - Unknown; Acquired Ataxia; Adult-onset Autosomal Recessive Cerebellar Ataxia; Alcohol Related Ataxia

 

Last Updated: 1 Sep 2016

Go to URL