Opitz syndrome

Common Name(s)

Opitz syndrome

Opitz syndrome, also called Obitz G/BBB syndrome, is a genetic condition that causes midline abnormalities. Specifically, features of this condition include wide spaced eyes (hypertelorism) along with voice box (larynx) abnormalities, windpipe (trachea) abnormalities, or esophagus abnormalities, which can all cause difficulty with swallowing and breathing. It is also common to have a gap between the trachea and esophagus (laryngeal cleft) that can make it difficult to breathe while eating. Facial changes include a prominent forehead, widow’s peak hairline, flat nasal bridge, thin upper lip, and low set ears. About half of those affected have learning problems (intellectual disabilities) and delays in development. Other features may include a cleft in the lip and/or roof of the mouth (palate). Males sometimes have genital abnormalities, such as an opening on the underside of the penis (hypospadias) or undescended testes (cryptorchidism).

Opitz syndrome can be caused by changes (mutations) in two different genes, as well as a chromosome abnormality. However, each of these genetic causes lead to similar features. The most common cause of Opitz syndrome is a mutation in the MID1 gene located on the X-chromosome. Some cases of Opitz syndrome are caused by missing (deleted) genetic material (DNA) from the long arm of chromosome 22, at location 22q11.2. Other cases are caused by a mutation in the SPECC1L gene.

Opitz syndrome is usually diagnosed by a doctor who is familiar with genetic conditions (geneticist) and a diagnosis is confirmed with genetic testing. Treatment options depend on the complications a child may have and may require surgery. Therapies are helpful for children with developmental delays. If your child has been diagnosed with Opitz syndrome, talk with their doctor to discuss current treatment options. Support groups are available to connect with others affected by this condition.

Source: Advocacy organizations associated with the condition.

 

Advocacy and Support Organizations

 

Condition Specific Organizations

Following organizations serve the condition "Opitz syndrome" for support, advocacy or research.

There are currently no organizations listed in Disease InfoSearch that support this condition. Create a listing.

 

 

General Support Organizations

Not finding the support you need? Show General Support Organizations

 
 
Top

How do you compare to others with this condition?

Privately answer questions about your health. Let resources, you select, come to you.

Anonymously share and see how your answers compare with others with this condition while privately providing key pieces of information to medical researchers, disease advocacy groups, and others ONLY YOU select to help speed up cures and better alternatives.

 
 

Advocacy and Support Organizations

 

Condition Specific Organizations

Following organizations serve the condition "Opitz syndrome" for support, advocacy or research.

There are currently no organizations listed in Disease InfoSearch that support this condition. Create a listing.

 

 

General Support Organizations

Not finding the support you need? Show General Support Organizations

 
 
 
 
Top

Scientific Literature

Articles from the PubMed Database

Research articles describe the outcome of a single study. They are the published results of original research.
The terms "Opitz syndrome" returned 116 free, full-text research articles on human participants. First 3 results:

Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes.
 

Author(s): Kevin R Francis, Amy N Ton, Yao Xin, Peter E O'Halloran, Christopher A Wassif, Nasir Malik, Ian M Williams, Celine V Cluzeau, Niraj S Trivedi, William J Pavan, Wonhwa Cho, Heiner Westphal, Forbes D Porter

Journal: Nat. Med.. 2016 Apr;22(4):388-96.

 

Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, which impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities and nervous system defects, though neither affected cell ...

Last Updated: 7 Apr 2016

Go To URL
The p.Phe174Ser mutation is associated with mild forms of Smith Lemli Opitz Syndrome.
 

Author(s): Arianna Tucci, Luisa Ronzoni, Carlo Arduino, Paola Salmin, Susanna Esposito, Donatella Milani

Journal:

 

Smith Lemli Opitz syndrome (SLOS; OMIM #270400) is an autosomal recessive metabolic disorder caused by mutations in the DHCR7 gene. SLOS is characterized by a plethora of abnormalities involving mainly the brain and the genitalia but also the cardiac, skeletal and gastroenteric system, ...

Last Updated: 12 Mar 2016

Go To URL
Clinical management of patients with ASXL1 mutations and Bohring-Opitz syndrome, emphasizing the need for Wilms tumor surveillance.
 

Author(s): Bianca Russell, Jennifer J Johnston, Leslie G Biesecker, Nancy Kramer, Angela Pickart, William Rhead, Wen-Hann Tan, Catherine A Brownstein, L Kate Clarkson, Amy Dobson, Avi Z Rosenberg, Samantha A Schrier Vergano, Benjamin M Helm, Rachel E Harrison, John M Graham

Journal: Am. J. Med. Genet. A. 2015 Sep;167A(9):2122-31.

 

Bohring-Opitz syndrome is a rare genetic condition characterized by distinctive facial features, variable microcephaly, hypertrichosis, nevus flammeus, severe myopia, unusual posture (flexion at the elbows with ulnar deviation, and flexion of the wrists and metacarpophalangeal joints), ...

Last Updated: 20 Aug 2015

Go To URL

Reviews from the PubMed Database

Review articles summarize what is currently known about a disease. They discuss research previously published by others.
The terms "Opitz syndrome" returned 14 free, full-text review articles on human participants. First 3 results:

Treatment of Smith-Lemli-Opitz syndrome and other sterol disorders.
 

Author(s): Melissa D Svoboda, Jill M Christie, Yasemen Eroglu, Kurt A Freeman, Robert D Steiner

Journal: Am J Med Genet C Semin Med Genet. 2012 Nov;160C(4):285-94.

 

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive genetic condition with a broad phenotype that results from deficiency of the final enzyme of the cholesterol synthesis pathway. This defect causes low or low-normal plasma cholesterol levels and increased 7- and 8-dehydrocholesterol ...

Last Updated: 23 Oct 2012

Go To URL
Smith-Lemli-Opitz syndrome.
 

Author(s): Andrea E DeBarber, Yasemen Eroglu, Louise S Merkens, Anuradha S Pappu, Robert D Steiner

Journal:

 

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple congenital malformation and intellectual disability syndrome, with clinical characteristics that encompass a wide spectrum and great variability. Elucidation of the biochemical and genetic basis for SLOS, specifically ...

Last Updated: 22 Jul 2011

Go To URL
Bohring-Opitz (Oberklaid-Danks) syndrome: clinical study, review of the literature, and discussion of possible pathogenesis.
 

Author(s): Rob Hastings, Jan-Maarten Cobben, Gabriele Gillessen-Kaesbach, Judith Goodship, Hanne Hove, Susanne Kjaergaard, Helena Kemp, Helen Kingston, Peter Lunt, Sahar Mansour, Ruth McGowan, Kay Metcalfe, Catherine Murdoch-Davis, Mary Ray, Marlène Rio, Sarah Smithson, John Tolmie, Peter Turnpenny, Bregje van Bon, Dagmar Wieczorek, Ruth Newbury-Ecob

Journal: Eur. J. Hum. Genet.. 2011 May;19(5):513-9.

 

Bohring-Opitz syndrome (BOS) is a rare congenital disorder of unknown etiology diagnosed on the basis of distinctive clinical features. We suggest diagnostic criteria for this condition, describe ten previously unreported patients, and update the natural history of four previously ...

Last Updated: 25 Apr 2011

Go To URL
 
 
Top

Symptoms, Diagnosis, and Treatment

There are currently no related results available in Genetics Home Reference.

There are currently no related results available in GeneReviews.

There are currently no related results available in Genetic Testing Registry.

 
 
Top

Clinical Trial Information This information is provided by ClinicalTrials.gov

Cholesterol and Antioxidant Treatment in Patients With Smith-Lemli-Opitz Syndrome (SLOS)
 

Status: Recruiting

Condition Summary: Smith-Lemli-Opitz Syndrome; Cone-Rod Dystrophy; Hearing Loss

 

Last Updated: 18 Aug 2016

Go to URL
Study of Smith-Lemli-Opitz Syndrome
 

Status: Recruiting

Condition Summary: Abnormalities; Inborn Errors of Metabolism; Mental Retardation; Muscle Hypotonia; Smith Lemli Opitz Syndrome

 

Last Updated: 13 Sep 2016

Go to URL
Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford
 

Status: Recruiting

Condition Summary: Rare Disorders; Undiagnosed Disorders; Disorders of Unknown Prevalence; Cornelia De Lange Syndrome; Prenatal Benign Hypophosphatasia; Perinatal Lethal Hypophosphatasia; Odontohypophosphatasia; Adult Hypophosphatasia; Childhood-onset Hypophosphatasia; Infantile Hypophosphatasia; Hypophosphatasia; Kabuki Syndrome; Bohring-Opitz Syndrome; Narcolepsy Without Cataplexy; Narcolepsy-cataplexy; Hypersomnolence Disorder; Idiopathic Hypersomnia Without Long Sleep Time; Idiopathic Hypersomnia With Long Sleep Time; Idiopathic Hypersomnia; Kleine-Levin Syndrome; Kawasaki Disease; Leiomyosarcoma; Leiomyosarcoma of the Corpus Uteri; Leiomyosarcoma of the Cervix Uteri; Leiomyosarcoma of Small Intestine; Acquired Myasthenia Gravis; Addison Disease; Hyperacusis (Hyperacousis); Juvenile Myasthenia Gravis; Transient Neonatal Myasthenia Gravis; Williams Syndrome; Lyme Disease; Myasthenia Gravis; Marinesco Sjogren Syndrome(Marinesco-Sjogren Syndrome); Isolated Klippel-Feil Syndrome; Frasier Syndrome; Denys-Drash Syndrome; Beckwith-Wiedemann Syndrome; Emanuel Syndrome; Isolated Aniridia; Beckwith-Wiedemann Syndrome Due to Paternal Uniparental Disomy of Chromosome 11; Beckwith-Wiedemann Syndrome Due to Imprinting Defect of 11p15; Beckwith-Wiedemann Syndrome Due to 11p15 Translocation/Inversion; Beckwith-Wiedemann Syndrome Due to 11p15 Microduplication; Beckwith-Wiedemann Syndrome Due to 11p15 Microdeletion; Axenfeld-Rieger Syndrome; Aniridia-intellectual Disability Syndrome; Aniridia - Renal Agenesis - Psychomotor Retardation; Aniridia - Ptosis - Intellectual Disability - Familial Obesity; Aniridia - Cerebellar Ataxia - Intellectual Disability; Aniridia - Absent Patella; Aniridia; Peters Anomaly - Cataract; Peters Anomaly; Potocki-Shaffer Syndrome; Silver-Russell Syndrome Due to Maternal Uniparental Disomy of Chromosome 11; Silver-Russell Syndrome Due to Imprinting Defect of 11p15; Silver-Russell Syndrome Due to 11p15 Microduplication; Syndromic Aniridia; WAGR Syndrome; Wolf-Hirschhorn Syndrome; 4p16.3 Microduplication Syndrome; 4p Deletion Syndrome, Non-Wolf-Hirschhorn Syndrome; Autosomal Recessive Stickler Syndrome; Stickler Syndrome Type 2; Stickler Syndrome Type 1; Stickler Syndrome; Mucolipidosis Type 4; X-linked Spinocerebellar Ataxia Type 4; X-linked Spinocerebellar Ataxia Type 3; X-linked Intellectual Disability - Ataxia - Apraxia; X-linked Progressive Cerebellar Ataxia; X-linked Non Progressive Cerebellar Ataxia; X-linked Cerebellar Ataxia; Vitamin B12 Deficiency Ataxia; Toxic Exposure Ataxia; Unclassified Autosomal Dominant Spinocerebellar Ataxia; Thyroid Antibody Ataxia; Sporadic Adult-onset Ataxia of Unknown Etiology; Spinocerebellar Ataxia With Oculomotor Anomaly; Spinocerebellar Ataxia With Epilepsy; Spinocerebellar Ataxia With Axonal Neuropathy Type 2; Spinocerebellar Ataxia Type 8; Spinocerebellar Ataxia Type 7; Spinocerebellar Ataxia Type 6; Spinocerebellar Ataxia Type 5; Spinocerebellar Ataxia Type 4; Spinocerebellar Ataxia Type 37; Spinocerebellar Ataxia Type 36; Spinocerebellar Ataxia Type 35; Spinocerebellar Ataxia Type 34; Spinocerebellar Ataxia Type 32; Spinocerebellar Ataxia Type 31; Spinocerebellar Ataxia Type 30; Spinocerebellar Ataxia Type 3; Spinocerebellar Ataxia Type 29; Spinocerebellar Ataxia Type 28; Spinocerebellar Ataxia Type 27; Spinocerebellar Ataxia Type 26; Spinocerebellar Ataxia Type 25; Spinocerebellar Ataxia Type 23; Spinocerebellar Ataxia Type 22; Spinocerebellar Ataxia Type 21; Spinocerebellar Ataxia Type 20; Spinocerebellar Ataxia Type 2; Spinocerebellar Ataxia Type 19/22; Spinocerebellar Ataxia Type 18; Spinocerebellar Ataxia Type 17; Spinocerebellar Ataxia Type 16; Spinocerebellar Ataxia Type 15/16; Spinocerebellar Ataxia Type 14; Spinocerebellar Ataxia Type 13; Spinocerebellar Ataxia Type 12; Spinocerebellar Ataxia Type 11; Spinocerebellar Ataxia Type 10; Spinocerebellar Ataxia Type 1 With Axonal Neuropathy; Spinocerebellar Ataxia Type 1; Spinocerebellar Ataxia - Unknown; Spinocerebellar Ataxia - Dysmorphism; Non Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Spectrin-associated Autosomal Recessive Cerebellar Ataxia; Spasticity-ataxia-gait Anomalies Syndrome; Spastic Ataxia With Congenital Miosis; Spastic Ataxia - Corneal Dystrophy; Spastic Ataxia; Rare Hereditary Ataxia; Rare Ataxia; Recessive Mitochondrial Ataxia Syndrome; Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Posterior Column Ataxia - Retinitis Pigmentosa; Post-Stroke Ataxia; Post-Head Injury Ataxia; Post Vaccination Ataxia; Polyneuropathy - Hearing Loss - Ataxia - Retinitis Pigmentosa - Cataract; Muscular Atrophy - Ataxia - Retinitis Pigmentosa - Diabetes Mellitus; Non-progressive Cerebellar Ataxia With Intellectual Disability; Non-hereditary Degenerative Ataxia; Paroxysmal Dystonic Choreathetosis With Episodic Ataxia and Spasticity; Olivopontocerebellar Atrophy - Deafness; NARP Syndrome; Myoclonus - Cerebellar Ataxia - Deafness; Multiple System Atrophy, Parkinsonian Type; Multiple System Atrophy, Cerebellar Type; Multiple System Atrophy; Maternally-inherited Leigh Syndrome; Machado-Joseph Disease Type 3; Machado-Joseph Disease Type 2; Machado-Joseph Disease Type 1; Lethal Ataxia With Deafness and Optic Atrophy; Leigh Syndrome; Leukoencephalopathy With Mild Cerebellar Ataxia and White Matter Edema; Leukoencephalopathy - Ataxia - Hypodontia - Hypomyelination; Leigh Syndrome With Nephrotic Syndrome; Leigh Syndrome With Leukodystrophy; Leigh Syndrome With Cardiomyopathy; Late-onset Ataxia With Dementia; Intellectual Disability-hyperkinetic Movement-truncal Ataxia Syndrome; Infection or Post Infection Ataxia; Infantile-onset Autosomal Recessive Nonprogressive Cerebellar Ataxia; Infantile Onset Spinocerebellar Ataxia; GAD Ataxia; Hereditary Episodic Ataxia; Gliadin/Gluten Ataxia; Friedreich Ataxia; Fragile X-associated Tremor/Ataxia Syndrome; Familial Paroxysmal Ataxia; Exposure to Medications Ataxia; Episodic Ataxia With Slurred Speech; Episodic Ataxia Unknown Type; Episodic Ataxia Type 7; Episodic Ataxia Type 6; Episodic Ataxia Type 5; Episodic Ataxia Type 4; Episodic Ataxia Type 3; Episodic Ataxia Type 1; Epilepsy and/or Ataxia With Myoclonus as Major Feature; Early-onset Spastic Ataxia-neuropathy Syndrome; Early-onset Progressive Neurodegeneration - Blindness - Ataxia - Spasticity; Early-onset Cerebellar Ataxia With Retained Tendon Reflexes; Early-onset Ataxia With Dementia; Childhood-onset Autosomal Recessive Slowly Progressive Spinocerebellar Ataxia; Dilated Cardiomyopathy With Ataxia; Cataract - Ataxia - Deafness; Cerebellar Ataxia, Cayman Type; Cerebellar Ataxia With Peripheral Neuropathy; Cerebellar Ataxia - Hypogonadism; Cerebellar Ataxia - Ectodermal Dysplasia; Cerebellar Ataxia - Areflexia - Pes Cavus - Optic Atrophy - Sensorineural Hearing Loss; Brain Tumor Ataxia; Brachydactyly - Nystagmus - Cerebellar Ataxia; Benign Paroxysmal Tonic Upgaze of Childhood With Ataxia; Autosomal Recessive Syndromic Cerebellar Ataxia; Autosomal Recessive Spastic Ataxia With Leukoencephalopathy; Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay; Autosomal Recessive Spastic Ataxia - Optic Atrophy - Dysarthria; Autosomal Recessive Spastic Ataxia; Autosomal Recessive Metabolic Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to Repeat Expansions That do Not Encode Polyglutamine; Autosomal Recessive Ataxia, Beauce Type; Autosomal Recessive Ataxia Due to Ubiquinone Deficiency; Autosomal Recessive Ataxia Due to PEX10 Deficiency; Autosomal Recessive Degenerative and Progressive Cerebellar Ataxia; Autosomal Recessive Congenital Cerebellar Ataxia Due to MGLUR1 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia Due to GRID2 Deficiency; Autosomal Recessive Congenital Cerebellar Ataxia; Autosomal Recessive Cerebellar Ataxia-pyramidal Signs-nystagmus-oculomotor Apraxia Syndrome; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to WWOX Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to TUD Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to KIAA0226 Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome; Autosomal Recessive Cerebellar Ataxia With Late-onset Spasticity; Autosomal Recessive Cerebellar Ataxia Due to STUB1 Deficiency; Autosomal Recessive Cerebellar Ataxia Due to a DNA Repair Defect; Autosomal Recessive Cerebellar Ataxia - Saccadic Intrusion; Autosomal Recessive Cerebellar Ataxia - Psychomotor Retardation; Autosomal Recessive Cerebellar Ataxia - Blindness - Deafness; Autosomal Recessive Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to a Polyglutamine Anomaly; Autosomal Dominant Spinocerebellar Ataxia Due to a Point Mutation; Autosomal Dominant Spinocerebellar Ataxia Due to a Channelopathy; Autosomal Dominant Spastic Ataxia Type 1; Autosomal Dominant Spastic Ataxia; Autosomal Dominant Optic Atrophy; Ataxia-telangiectasia Variant; Ataxia-telangiectasia; Autosomal Dominant Cerebellar Ataxia, Deafness and Narcolepsy; Autosomal Dominant Cerebellar Ataxia Type 4; Autosomal Dominant Cerebellar Ataxia Type 3; Autosomal Dominant Cerebellar Ataxia Type 2; Autosomal Dominant Cerebellar Ataxia Type 1; Autosomal Dominant Cerebellar Ataxia; Ataxia-telangiectasia-like Disorder; Ataxia-intellectual Disability-oculomotor Apraxia-cerebellar Cysts Syndrome; Ataxia-deafness-intellectual Disability Syndrome; Ataxia With Vitamin E Deficiency; Ataxia With Dementia; Ataxia Neuropathy Spectrum; Ataxia - Tapetoretinal Degeneration; Ataxia - Photosensitivity - Short Stature; Ataxia - Pancytopenia; Ataxia - Oculomotor Apraxia Type 1; Ataxia - Hypogonadism - Choroidal Dystrophy; Ataxia - Other; Ataxia - Genetic Diagnosis - Unknown; Acquired Ataxia; Adult-onset Autosomal Recessive Cerebellar Ataxia; Alcohol Related Ataxia

 

Last Updated: 1 Sep 2016

Go to URL